
Journal of Applied Mechanics and Technical Physics, Vol. 48, No. 2, pp. 265–270, 2007

NONLINEAR STOCHASTIC CREEP PROBLEM

FOR AN INHOMOGENEOUS PLANE WITH THE

DAMAGE TO THE MATERIAL TAKEN INTO ACCOUNT

UDC 539.376N. N. Popov and V. P. Radchenko

An analytical method for the solution of two-dimensional nonlinear creep problems is developed using
as an example the biaxial extension of a plane from a stochastically inhomogeneous material with
damage accumulation and the third stage of creep taken into account. The governing creep relation is
adopted in accordance with the energetic version of the nonlinear theory of viscous flow. The stochas-
ticity of the material is defined by two random functions of coordinates. Formulas for calculating the
stress variance are obtained.
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At present, adequately thorough studies of structurally inhomogeneous media using the theory of random
functions have been performed only for linearly elastic media [1]. Under creep conditions, the development of
analytical methods for solving stochastic boundary-value problems is significantly complicated, primarily because
of the physical and stochastic nonlinearity of the governing equations. One-dimensional stochastic problems of
steady-state creep (for example, a tube subjected to internal pressure) can be solved with any degree of accuracy
using the small parameter method [2]. As regards plane and spatial creep problems, they have been solved only as a
first approximation using steady-state creep theory [3–5]. Analytical methods for solving stochastic boundary-value
problems with damage accumulation and the third stage of creep taken into account have not been developed.

Let the components of the nominal-stress tensor σij satisfy the equilibrium equations

σij,j = 0 (i, j = 1, 2), (1)

and let the components of the strain-rate tensor ṗij satisfy the condition

ΛijΛklṗjk,il = 0, (2)

which is obtained by differentiation of the strain compatibility equation with respect to time. Here Λij is a unit
antisymmetric pseudotensor. The summation from 1 and 2 is performed over repeated indices.

Equations (1) and (2) are closed by the stochastic governing relations of the nonlinear theory of viscous flow
(steady-state creep) [3]:

ṗij = cs̄n−1(σ̄ij − (1/3)δij σ̄mm)(1 + α1U1(x1, x2)) (i, j = 1, 2). (3)

Here s̄ is the stress intensity:

s̄2 = (3σ̄ij σ̄ij − σ̄iiσ̄jj)/2,

σ̄ij are the components of the true-stress tensor, δij is the Kronecker delta, U1(x1, x2) is a random homogeneous
function that describes the rheological characteristics of the material with expectation 〈U1〉 = 0 and variance
〈U2

1 〉 = 1, and c, n, and α1 are material constants.
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The governing equations with the third stage of creep taken into account are written using the energetic
version of steady-state creep theory [6], according to which the true stresses σ̄ij are related to the nominal stresses σij

by the formula

σ̄ij = σij(1 + ω), (4)

where ω(t, x1, x2) is a scalar damage parameter that describes damage accumulation with time (at each point of
the material) due to creep and satisfies the kinetic equation

ω̇ = b(1 + α2U2(x1, x2))σ̄ij ṗij . (5)

Here b and α2 are material constants, U2(x1, x2) is a random homogeneous function that describes the stochastic
damage to the material with expectation 〈U2〉 = 0 and variance 〈U2

2 〉 = 1.
The problem formulated here is physically and statistically nonlinear, and, hence, it is solved approximately

for the nominal stresses σij by linearization using the small parameter method.
Using (4), we write relations (3) as

ṗij = ṙij(1 + ω)n, (6)

where

ṙij = csn−1(σij − (1/3)δijσmm)(1 + α1U1(x1, x2)). (7)

Here s is the nominal-stress intensity. Formula (7) specifies the creep law for ω(t) ≡ 0. In view of (6), Eq. (5) for
the damage parameter ω is written as

ω̇ = b(1 + α2U2)ṙij(1 + ω)n. (8)

Integrating Eq. (8) subject to the initial condition ω(0) = 0, for the quantity (1 + ω)n, we have

(1 + ω)n = 1
/(

1 − bn(1 + α2U2)

t∫

0

σmnṙmn dτ
)
.

Linearization of the right side of the last relation yields

(1 + ω)n ≈ 1 + bn(1 + α2U2)

t∫

0

σmnṙmn dτ. (9)

In view of (9), relation (6) becomes

ṗij = ṙij

(
1 + bn(1 + α2U2)

t∫

0

σmnṙmn dτ
)
. (10)

Let the nominal-stress tensor be represented as the sum of the deterministic term σ0
ij and the fluctuation

σ∗
ij :

σij = σ0
ij + σ∗

ij , 〈σij〉 = σ0
ij .

Linearization of relation (7) was performed in [3] using the condition that σ0
11 and σ0

22 are constant and
σ0

12 = 0:

ṙ11 = ṙ0
11 + (1/3)csn−1

0 (2σ∗
11 − σ∗

22 + (σ∗
11l1 + σ∗

22l2)k1 + α1U1l1),

ṙ22 = ṙ0
22 + (1/3)csn−1

0 (2σ∗
22 − σ∗

11 + (σ∗
11l1 + σ∗

22l2)k2 + α1U1l2), (11)

ṙ12 = csn−1
0 σ∗

12.

Here

ṙ0
11 = (1/3)csn−1

0 l1, ṙ0
22 = (1/3)csn−1

0 l2, s2
0 = (σ0

11)
2 + (σ0

22)
2 − σ0

11σ
0
22,

l1 = 2σ0
11 − σ0

22, l2 = 2σ0
22 − σ0

11, ki = (n − 1)li/(2s2
0).
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Each of the quantities ṗij , σij , and ṙij in relation (10) is represented as a deterministic part and a random
part:

ṗ0
ij + ṗ∗ij = (ṙ0

ij + ṙ∗ij)
(
1 + bn(1 + α2U2)

t∫

0

(σ0
mn + σ∗

mn)(ṙ0
mn + ṙ∗mn) dτ

)
. (12)

Removing the parentheses on the right of expression (12) with the use of relation (11), collecting terms, and
discarding terms of the second and third orders of smallness, for the strain rate fluctuations we obtain

ṗ∗11 = A2bnl1

(
B

t∫

0

σ∗
11 dτ + C

t∫

0

σ∗
22 dτ

)
+ A2bnl1α1U1(σ0

11l1 + σ0
22l2)t

+ A2bnl1α2U2(σ0
11l1 + σ0

22l2)t + A(σ∗
11(2 + l1k1) + σ∗

22(−1 + l1k2) + α1U1l1)(1 + A1t), (13)

ṗ∗22 = A2bnl2

(
B

t∫

0

σ∗
11 dτ + C

t∫

0

σ∗
22 dτ

)
+ A2bnl2α1U1(σ0

11l1 + σ0
22l2)t

+ A2bnl2α2U2(σ0
11l1 + σ0

22l2)t + A(σ∗
11(−1 + l1k2) + σ∗

22(2 + l2k2) + α1U1l2)(1 + A1t),

ṗ∗12 = 3Aσ∗
12(1 + A1t),

where

A = (1/3)csn−1
0 , A1 = Abn(σ0

11l1 + σ0
22l2),

B = l1 + σ0
11(2 + l1k1) + σ0

22(−1 + l1k2), C = l2 + σ0
11(−1 + l2k1) + σ0

22(2 + l2k2).

Substitution of (13) into the compatibility equation for the strain-rate fluctuations

ṗ∗11,22 + ṗ∗22,11 − 2ṗ∗12,12 = 0

yields the relation

Abn
(
l1B

t∫

0

(σ∗
11,11 + σ∗

11,22) dτ + l2C

t∫

0

(σ∗
22,11 + σ∗

22,22) dτ
)

+ Abntα1(l1U1,22 + l2U1,11)(σ0
11l1 + σ0

22l2) + (σ∗
11,22(2 + l1k1) + σ∗

22,22(−1 + l1k2)

+ σ∗
11,11(−1 + l2k1) + σ∗

22,11(2 + l2k2) + α1(U1,22l1 + U1,11l2))(1 + A1t)

+ Abntα2(l1U2,22 + l2U2,11)(σ0
11l1 + σ0

22l2) − 6σ∗
12,12(1 + A1t) = 0. (14)

This equation should be supplemented by the equilibrium equations for the stress fluctuations

σ∗
ij,j = 0. (15)

If we introduce the stress function F for the nominal-stress tensor fluctuations

σ∗
11 = F,22, σ∗

22 = F,11, σ∗
12 = −F,12, (16)

then, instead of system (14), (15), we obtain the following differential equation for the function F :

Abn
(
l1B

t∫

0

(F,2222 + F,1122) dτ + l2C

t∫

0

(F,1111 + F,1122) dτ
)

+ Abntα1(l1U1,22 + l2U1,11)(σ0
11l1 + σ0

22l2) + (F,1111(2 + l2k2) + 2F,1122(2 + l1k2)

+ F,2222(2 + l1k1) + α1U1,22l1 + α1U1,11l2)(1 + A1t)

+ Abntα2(l1U2,22 + l2U2,11)(σ0
11l1 + σ0

22l2) = 0. (17)
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Because of the computational difficulties encountered in the solution of Eqs. (17), we shall further analyze only the
case of uniform extension (σ0

11 = σ0
22 = σ0). Then, Eq. (17) becomes

n + 3
2

(F,1111 + 2F,1122 + F,2222)(1 + A1t) +
A1

2
(n + 1)

t∫

0

(F,1111 + 2F,1122 + F,2222) dτ

= −(1 + 2A1t)α1σ
0(U1,11 + U1,22) − A1tα2σ

0(U2,11 + U2,22). (18)

Let the functions Uk(x1, x2) (k = 1, 2), which are used to specify the random perturbation fields for the
mechanical properties of the material, be homogeneous and isotropic. Then, they can be represented as the Fourier–
Stieltjes stochastic integrals [6]

Uk(x1, x2) =

+∞∫ ∫
−∞

ei(q1x1+q2x2) dϕk(q1, q2) (k = 1, 2), (19)

for the random differentials, the following relation holds:

〈dϕk(q1, q2)dϕk(q′1, q
′
2)〉 = Sk(q1, q2)δ(q1 − q′1)δ(q2 − q′2) dq1 dq2 dq′1 dq′2.

Here Sk(q1, q2) is the spectral density of the field Uk and δ(x) is the Dirac delta function; the bar denotes complex
conjugation (the summation is not performed over the index k).

Since the random fields of microinhomogeneities Uk(x1, x2) are rapidly oscillating, the solution of the lin-
earized problem (18) will be homogeneous and it can be sought in the form

F =

+∞∫ ∫

−∞
ei(q1x1+q2x2)(b1(q1, q2, t) dϕ1(q1, q2) + b2(q1, q2, t) dϕ2(q1, q2)), (20)

where bk(q1, q2, t) (k = 1, 2) are unknown weight functions.
Substitution of the representation (19), (20) into relation (18) yields the following two equations for the

weight functions bk(q1, q2, t):

n + 3
2

b1q
2(1 + A1t) +

A1

2
(n + 1)q2

t∫

0

b1 dτ = (1 + 2A1t)α1σ
0; (21)

n + 3
2

b2q
2(1 + A1t) +

A1

2
(n + 1)q2

t∫

0

b2 dτ = A1tα2σ
0, q2 = qiqi. (22)

Let us consider the solution of Eq. (21). The change of variable b1(t) = ẋ(t) reduces Eq. (21) to the first-order
linear differential equation

n + 3
2

ẋ(t)q2(1 + A1t) +
A1

2
(n + 1)q2x(t) = (1 + 2A1t)α1σ

0,

whose solution has the form

x(t) = C(1 + A1t)−(n+1)/(n+3) +
2α1σ

0(1 + 2A1t)
A1(n + 1)q2

− 2α1σ
0(1 + A1t)(n + 3)

A1(n + 1)(n + 2)q2
(23)

(C is an arbitrary constant). Differentiation of solution (23) yields

b1(t) = −CA1
n + 1
n + 3

(1 + A1t)−2(n+2)/(n+3) +
2α1σ

0

(n + 2)q2
.

The constant C can be found using the initial condition

b1(0) =
2α1σ

0

(n + 3)q2
,

which is calculated in accordance with the results of [3] for ω = 0. As a result, the weight function b1(t) is defined
by the formula
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TABLE 1

α1

�
D11(0)/σ0 · 102

0.1 1.98
0.2 3.95
0.3 5.93
0.4 7.90
0.5 9.88

TABLE 2

α1

�
D11(1000)/σ0 · 102

α2 = 0.1 α2 = 0.2 α2 = 0.3 α2 = 0.4 α2 = 0.5

0.1 3.30 5.20 7.30 9.50 11.80
0.2 5.25 6.60 8.40 10.30 12.50
0.3 7.43 8.40 9.90 11.70 13.40
0.4 9.70 10.40 11.70 13.20 14.90
0.5 12.00 12.60 13.70 15.00 16.50

b1(t) = −2α1σ
0(1 + A1t)−2(n+2)/(n+3)

(n + 2)(n + 3)q2
+

2α1σ
0

(n + 2)q2
. (24)

Equation (22) is solved similarly. Its solution has the form

b2(t) =
2α2σ

0

(n + 2)q2

(
1 − (1 + A1t)−2(n+2)/(n+3)

)
. (25)

Thus, according to Eqs. (9), (24), and (25), the components of the tensor of nominal stress fluctuations are
calculated by the formula

σ∗
kl =

+∞∫ ∫
−∞

ei(q1x1+q2x2)(ckl(q1, q2, t) dϕ1(q1, q2) + dkl(q1, q2, t) dϕ2(q1, q2)), (26)

where c11 = −q2
2b1, c12 = q1q2b1, c22 = −q2

1b1, d11 = −q2
2b2, d12 = q1q2b2, and d22 = −q2

1b2.
Solution (26) can be used to study the random stress field in the case of creep of a flat plate. For rapidly

varying random fields of microinhomogeneities Uk, the boundaries have a fairly small effect on the stress-strain state
in the internal region. Therefore, far from the boundary of the plate, the stress state is defined by formula (26). Near
the boundary on which the deterministic boundary conditions are specified, it is necessary to perform additional
studies.

To determine the variances of the random stress field, we assume that the creep and damage accumulation
processes have independent effects on the probabilistic characteristics of the stresses. Under this condition, the
stress variances are defined by the formula

Dkl(t) = D(σkl) =

+∞∫ ∫
−∞

(S1(q1, q2)c2
kl(q1, q2, t) + S2(q1, q2)d2

kl(q1, q2, t)) dq1 dq2. (27)

The spectral density Si of the isotropic scalar field Ui depends only on the wave-vector modulus q0 =√
q2
1 + q2

2 , and for the variance, the following equality holds [7]:

DUi = 2π

∞∫

0

Si(q0)q0 dq0 = 1. (28)

Passing to the polar coordinates q1 = q0 cosϕ and q2 = q0 sin ϕ in the integral (27) and integrating it subject
to (28), we obtain the following equalities for the stress variance:

D11(t) = D22(t) = 3D12(t)

=
3α2

1(σ0)2

2(n + 2)2
(
1 − (1 + A1t)−2(n+2)/(n+3)

n + 3

)2

+
3α2

2(σ0)2

2(n + 2)2
(
1 − (1 + A1t)−2(n+2)/(n+3)

)2

.

As an example, we consider uniform extension of a plate of 12Kh18N10T steel at a temperature T =
1123 K and a stress σ0 = 39.24 MPa and for the following parameters of the governing relations: n = 3.2,
c = 6.67 · 10−9 MPa−3.2 · h−1, and b = 0.141. These data are taken from [8]. Table 1 gives values of the coefficient
of variation

√
D11(0)/σ0 at t = 0 and for various values of α1, which corresponds to the case of steady-state creep

ignoring damage accumulation. Table 2 gives values of
√

D11(1000)/σ0 at t = 1000 h versus the parameters α1

and α2.
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From Tables 1 and 2, it follows that the coefficient of variation
√

D11(t)/σ0 can be significant and, depending
on the parameters α1 and α2 and time t, it can be several times higher than the corresponding value in the case of
steady-state creep ignoring damage accumulation. In other words, in the third stage of creep, the stress fluctuations
change (increase) with time, which provides a theoretical explanation for the experimentally observed increase in
the variation of the creep strain in the softening stage compared to the variation in the stage of steady-state creep.
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